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Abstract

Probabilistic generative models such as Probabilistic Latent Semantic Indexing
(PLSI), Latent Dirichlet Allocation (LDA), and their variants have been used with
some success on the task of object recognition in images. Recent approaches inte-
grate spatial information into the generative process leading to complex hierarchi-
cal models. This work takes a simpler approach by encoding the neighborhood of
a particular visual word in a relation dictionary. Thus, an image is represented as
histogram over this relational dictionary, and standard topic modeling approaches
can be applied. We examine three methods of inducing the neighborhood graph
and compare them on an image recognition task using the LabelMe benchmark
database. Results for the relational dictionary are on-par with a standard non-
relational dictionary, but consistently poor, thereby suggesting a flaw in the exper-
imental setup.

1 Introduction

The task of automated image understanding involves identifying the objects of which an image con-
sists, how they might be interacting, and the general context of the image. Each of these components
are inter-related, for instance, a city street scene may consist of cars, a road, buildings and people.
These objects all have typical relationships: cars are on the road, people are on the sidewalk, and
buildings adjoin with sidewalks and are behind people. Recently, generative probabilistic models,
namely Topic Models such as Probabilistic Latent Semantic Indexing[8] and Latent Dirichlet Allo-
cation[1] have been used with some success on the task of image understanding[4][2].

Traditional topic modeling methods generally assume a ’bag of features’ model in which there is no
notion of order, location or distance associated with each feature in the model. In the real world, or-
der plays a large role in defining the context in which features can appear. For instance, the meaning
of a textual document is lost if the words are randomly permuted. Similarly, an image of a human
face ceases to be recognizable if the relative positions of the eyes, nose and mouth are scrambled.
Although topic models have seen much success in their application to various domains, these small
examples suggest that there is something to be gained by considering the spatial relationships be-
tween features.

2 Background

A core task of general image understanding is object recognition, that is, determining which of some
number of known objects an image consists of. The typical approach to object recognition involves
several standard steps[3]:
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1. Detection of interest points xi in the image.

2. Description of local image region around xi.

3. Quantization of the descriptor into a fixed size dictionary D of visual words.

4. Application of a classifier.

Prior to application of a classifier, recent approaches to object recognition have found success using
probabilistic generative models to cluster the distribution of visual words associated with a particular
object class label. For instance, [4] uses a variant of the Author-Topic Model[13] to model natural
scenes. This work uses the bag of words model that ignores the spatial location associated with
each visual word. Probabilistic generative models have been used to model feature co-occurrence
[21], the relative locations of features [17] [22] and the spatial transformations that led a particular
configuration [16]. Other approaches to object recognition that utilize spatial relationships are: [5]
uses EM to learn a Bayesian model of appearance, shape and scale; [10] aggregates statistics of local
appearance at multiple scales; and both [15] and [2] integrate hierarchical image segmentation within
a topic modeling framework. Spatial relationships have also been considered in the general context
of topic modeling. Wallach[20] describes a bigram model for text corpora, Griffiths and Steyvers
[7] describe LDA Collocation which also considers bigrams, and LDA-Composite, which overlays a
Hidden Markov Model (HMM) on the observed sequence of words. These works consider only the
sequential order of words, and do not explicitly extend to multi-dimensional spaces. Finally, Wu[24]
discusses the integration of spatial constraints into a Dirichlet process using Markov Random Fields.

3 Approach

In this work, we consider encoding the spatial relationship among neighboring codewords in a sec-
ondary relational dictionary R, and then using R as input to a topic modelling algorithm.

3.1 Relational Dictionary

The relational dictionary consists of all unordered pairs of codewords in the standard dictionary
(see Figure 1). Thus, a standard codeword dictionary of size d produces a relational dictionary
of size d · (d + 1)/2. An image is represented as histogram over the relational dictionary R by
projecting all edges in the neighborhood graph onto R, and simply counting how many times each
relational codeword r occurs. In summary, the process for producing a relational representation of
is as follows:

1. Detect interest points, compute descriptors, and quantize into visual words.

2. Induce a graph on the detected interest points xi

3. Project neighbors onto relational dictionary

Figure 1: Relational Dictionary Formation. From right to left: Descriptors computed on detected
interest points are quantized into a fixed size dictionary (of length 3 here). The relational dictionary
is formed by all unordered pairs of standard codewords.
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3.2 Inducing a Graph

In order to determine the distribution of relational codewords for each image, some notion of neigh-
borhood between feature positions xi must be defined. Intuitively, we would like the distribution to
reflect (a) that interest points from the same object should be related (b) interest points from an ob-
ject and the background it typically occurs in should be related. In both cases, the simplest general
method which satisfies both properties is that neighbor interest points should have nearby spatial
positions. Here we compare three possibilities for inducing a graph among the positions xi:

• K-Nearest Neighbors
• Fixed-Radius Neighbors
• Delaunay Triangulation

For K-Nearest Neighbors, the neighborhood for the point xi consists of the k instances of xj with
the minimum L2 distance ||xi − xj ||. For Fixed-Radius, eij = 1 if ||xi − xj || < r, for some fixed
r. Finally, the Delaunay Triangulation produces a triangulation of the points {xi}, (so the resulting
graph is fully connected graph) based on the principle of maximizing the minimum angle of all
the angles of the triangles in the triangulation [23]. The rationale for choosing these methods was
simplicity and readily available implementations. The graphs induced by each method are shown
for an example image in Figure 2.

Figure 2: From left to right, top: Location of detected features, K-Nearest Neighbors(k=5), bottom:
Fixed Radius Neighbors(r=10 pixels), Delaunay Triangulation.

4 Evaluation

The graph induction methods were evaluated in terms of a binary image classification task. That
is, for each image, the goal is to predict whether a given tag occurs in the image. Two methods
for doing this were evaluated. In the first, Latent Dirichlet Allocation[1] is applied to the merged
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Figure 3: The Author Topic Model. In the Object-Image interpretation, the generative process is
as follows: Each of M images has an associated set of observed object tags ad. Each of the A
possible object tags is associated with a distribution θ of topics. Similarly, each of the T possible
topics is associated with a distribution φ over the visual words in the image. For each word w, a
tag x is sampled uniformly from ad, then a topic z from θx, then the word w from φz . α and β are
hyper-parameters of the Dirichlet distribution from which φ and θ are drawn.

training and test set to learn a set of topic mixture components for each image. The class labels are
not used in this process. The topic mixture components can be viewed as a reduced dimensionality
representation of the original data. This representation is then used as the input data to a standard
Machine Learning classification algorithm such as Naive Bayes or Support Vector Machines.

In the second method, the Author-Topic Model[13] variant of LDA is used. Here, the class labels
are used in the generative model to influence the distribution of topics for each image (See Figure 3.
Hence, only the training set is used to learn the topic mixture components. Rather than inferring the
mixture components for the test set and using a classifier, the generative model can be used directly
to infer the class labels most likely to generate the observed test data. This value was calculated
as follows for the test data based on the estimated object-topic and topic-word assignments in the
training data:

P (O|I) =
∏
w∈I

∑
z

P (z|O)P (w|z)

For both LDA and Author Topic, Gibbs Sampling was used to infer the mixture parameters based
on code provided in [6].

4.1 Data

LabelMe is a web-application that allows casual users to upload photos and then annotate them with
tagged polygons [14]. At the time of writing, the full database consists of 162993 images, 43182 of
which have at least one annotation. A subset of the database is available for benchmarking purposes.
The training set contains 2920 images, 32164 total annotations and 127 unique tags. The test set
contains 1033 images and 32853 total annotations. The images are primarily street scenes, so they
tend to contain a large proportion of tags such as sidewalk, car, building, road, etc.

4.2 Representation

Each image was represented in a standard dictionary of 100 and 10000 codewords, and relational
dictionaries built using the standard dictionary of size 100 (resulting in a relational dictionary size
of 5500). The Harris-Affine interest point detector and SIFT[11] descriptor provided by [19] were
used to find and describe the interest points. The dictionary was learned from the training data using
code provided by [18], which is based on a vocabulary tree described in[12].
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5 Results

Receiver-Operator-Characteristic (ROC) curves comparing the graph induction techniques are
shown in Figure 4 for two image categories. Unfortunately, at the time of this writing, the ex-
periments utilizing the Author Topic model described previously failed to complete. As can be seen
the plots, classification accuracy is disappointingly low. For all methods used, the True/False Pos-
itive ratio was only slightly better than random chance, and in some cases, worse. Interestingly,
the Delaunay method produced drastically different results than the others, which all had similar
performance. While in some cases it appeared to improve performance, in others it degraded.

The baseline LDA approach has been demonstrated to be effective on other image databases [4], so
it is suspicious that the baseline does poorly for the LabelMe benchmark database. Other approaches
using the LabelMe benchmark database report significantly results, but use more sophisticated gen-
erative models than the baseline LDA. Further experimentation is needed to either (a) confirm that
baseline LDA is ill-suited to the LabelMe database or (b) find an error in the experimental procedure
that led to these poor results.
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Figure 4: ROC curves comparing the graph induction techniques with baseline for two image cate-
gories (car and motorbike).

6 Conclusion and Future Work

This work examined the use of relational codewords for encoding spatial relationships in an image
for the task of object recognition. We compared three methods of inducing a graph on a sparse set of
detected features in an image: K-Nearest Neighbors, Fixed-Radius Neighbors, and Delaunay Trian-
gulation. This relational dictionary was compared to a standard dictionary on an binary recognition
task. Results were inconclusive. The relational dictionaries performed similarly to the standard
dictionary, but performance was poor across the boards. Further experimentation is needed to con-
firm the results. One possible direction for future research is examining more sophisticated methods
for graph induction. For instance, one intriguing alternative is integrating a probabilistic genera-
tive edge model into the topic modelling framework. This would avoid the quadratic explosion in
the number of relational codewords necessitated by comparing all pairs of standard codewords, and
practically allow a greater number of standard codewords to be used. Finally, there is some evidence
that suggests dense sampling of visual words is superior to the sparse interest point detection used
here[9]. Dense sampling would lead to a straightforward definition of neighborhood as a standard
2D uniform grid. Such a formulation may allow the adaptation of the technique described in [24],
which uses Markov Random Fields.
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