A 3D Laser Targeting System Master Thesis

Roman Stanchak

rs7@cec.wustl.edu

Department of Computer Science and Engineering Washington University in St. Louis Co-advised by Robert Pless and Bill Smart

Overall Goal

Aim laser at a point in the environment using observations from a stereo camera

Contribution

Two methods of calibrating camera observations to laser controls

- > Theoretical justification
- > Implementation
- > Experimental analysis
 - > Overall system accuracy
 - > depth of target
 - > position of target
 - > Accuracy of different calibration methods

Outline

- > Related Work & Motivations
- > Background
- > Calibration Algorithms
 - > Theory
 - > Experimental Results
- > Improving Calibration
 - > Automatic Detection
 - > Point Selection
 - > More Experimental Results
- > Concluding Remarks

Related Work: Visual Servoing

Iterative method to control robotic manipulator using camera observations

> use error gradient to pick action that minimizes difference between target and observed position

Advantages

- > Analytic relationship not required
- > Can dynamically adapt to to observed errors

Problems

- > convergent method, never *exactly* on
- > Requires consistent knowledge of laser dot position
 - > Laser dot detection not robust

Current Method

Solve for transformation between laser and one plane in space.

- > requires only one camera
- > allows direct aiming of the laser
- > calibration possible with 4 corresponding points between laser & image
- Problems
 - > Doesn't model full 3D geometry
 - > targeting outside depth plane is inaccurate
 - > must recalibrate to change it

New Approach

- > Stereo camera measures depth
- > Exact transformation allows direct aiming of laser
- Two calibration methods
 - > Direct (3D -> laser)
 - > Epipolar (2D x 2 -> laser)

Background: Laser

We model the laser as a black box:

- > Two inputs (u, v) control direction $\vec{X_L}$ of the laser.
- > Fixed origin
- > Direction $\vec{X_L}$ linear with $x_L = (u, v)$.

Background: Laser

Direction $\vec{X_L}$ linear with x_L .

$$w\mathbf{x}_{\mathbf{L}} = \mathbf{A}_{\mathbf{L}}\vec{X}_{L}$$

Where

- > w is a scale factor
- > A is a 3×3 laser projection matrix.

 x_L projects on a line of 3D points.

Background: Depth Sensor

Requirements:

- > can sense laser dot
- > can report position relative to some 3D coordinate system

Tyzx Stereo Camera

- > dot is visible in dim lighting
- > report location relative to left camera center

Coordinate system relationship

Camera and laser 3D coordinate systems are related by a rotation and translation.

- > \mathbf{R} is a 3×3 rotation matrix
- > **T** is a 3×1 translation vector.

Coordinate system relationship

Laser control and Camera coordinate related by

$\mathbf{H}\mathbf{X}_{\mathbf{C}}=\mathbf{x}_{\mathbf{L}}$

- > Where $\mathbf{H} = \mathbf{A}_{\mathbf{L}}[\mathbf{R}|\mathbf{T}]$
 - > A_L is laser projection matrix
 - > $[\mathbf{R}|\mathbf{T}]$ is 3×4 augmented matrix of rotation and translation

- > Calibrate laser by solving for H
- > Control laser by multiplying ${\bf H}$ and the desired target ${\bf X}_{\bf C}$

Washington University in St. Louis School of Engineering & Applied Science

Direct Calibration

- > Observe correspondance between laser, 3d coordinate of laser in camera image
- Each correspondance provides three linear constraints on H:

$$Xh_1 + Yh_2 + Zh_3 + h_4 = wu$$

$$Xh_5 + Yh_6 + Zh_7 + h_8 = wv$$

$$Xh_9 + Yh_{10} + Zh_{11} + h_{12} = w$$

> Where h_i are the components of the matrix H

Direct Calibration

> Eliminating w maintains two linear constraints

 $Xh_1 + Yh_2 + Zh_3 + h_4 = u(Xh_9 + Yh_{10} + Zh_{11} + h_{12})$ $Xh_5 + Yh_6 + Zh_7 + h_8 = v(Xh_9 + Yh_{10} + Zh_{11} + h_{12})$

> Need 6 or more correspondences to solve for 12 degrees of freedom of H using linear least squares

Deriving Laser Controls with H

Г

Given H:

> Define 3D coordinate $\vec{X_C}$ of target using Tyzx Stereo camera

> Product
$$\mathbf{HX}_{\mathbf{C}} = \begin{bmatrix} wv \\ wu \\ w \end{bmatrix}$$
.

> Solve for laser controls (u, v) by dividing out w.

Results to come ...

- > 3D sensor not required
- > Requires two or more conventional cameras
- > Cameras can be uncalibrated

Washington University in St. Louis School of Engineering & Applied Science

Background: Camera

Pinhole Perspective projection model.

- > C = center of projection
- > \vec{X}_C = 3D point relative to C
- > m = projection of \vec{X}_C on 2D image plane

Camera Projection Equation

$$s\mathbf{m} = \mathbf{A}_{\mathbf{C}} \vec{X}_{C}$$

Where:

- > m = homogeneous 2D image coordinate $\begin{bmatrix} x & y & 1 \end{bmatrix}^T$
- > \vec{X}_C = 3D point relative to camera center
- > $A_C = 3 \times 3$ camera calibration matrix encoding *intrinsic* parameters
- > *s* = the projective depth

Background: Stereo

Cameras related by rotation and translation

Background: Epipolar Line

Point on camera image 1 constrained to lie on a line in camera image 2 (and vice versa).

Background: Fundamental Matrix

Epipolar geometry encoded in the Fundamental Matrix:

 $\mathbf{m^TFm'} = \mathbf{0}$

- > \mathbf{F} is a 3×3 matrix.
- > Well studied in vision literature.
- > Given examples of corresponding m,m', many techniques to solve for ${f F}.$

Key intuition: Laser is an inverted camera

- > Emits light instead of absorbing it
- > (u,v) laser controls congruent to (x,y) image coordinates.
- > Same linear relationship.

$$\underbrace{\mathbf{sm} = \mathbf{A}_{\mathbf{C}} \vec{X}_{C}}_{Camera} \quad \underbrace{w\mathbf{x}_{\mathbf{L}} = \mathbf{A}_{\mathbf{L}} \vec{X}_{L}}_{Laser}$$

One camera constrains laser control to a particular line in (u, v) space.

Two cameras constrain laser control to the intersection of epipolar lines in (u, v) space.

- > Fundamental matrix F encodes this geometric relationship
- > Each correspondance provides 1 constraint on F
- > Utilize Hartley's Normalized 8 point algorithm to solve for F
- > Need to solve for two F's:
 - > Camera 1 and Laser
 - > Camera 2 and Laser

Deriving Laser Control

Requires:

- > Two fundamental matrices acquired during calibration
- > Image coordinates of the target in each camera
- Plugging these in yields:
 - > Two linear constraints (one for each camera)
 - > Two Unknowns (u, v)

Solve directly for laser control (u, v).

Experimental Procedure

Calibration

- > Move laser to an arbitrary (u, v) coordinate
- > Click on laser position in camera image
- Laser position, clicked image position define corresponding points.
- > Laser moved in regular grid along image
- > Repeated at several different depth planes

Experimental Procedure

Targeting

- > Targets are the 4 extreme corners on a chessboard
- > Error is difference between actual position and target in mm
- > Test at 3 positions

Washington University in St. Louis School of Engineering & Applied Science

Parameter optimization

- > Number of calibration planes
- > Number of calibration points/plane
- > Maximum angle of laser

See paper for details.

Results

Washington University in St.Louis School of Engineering & Applied Science

Discussion

- > Both methods accurate to within 3 4 mm on average
- > Epipolar method slightly better at all depths
- > Why?
 - > Maturity of fundamental matrix solution method.
 - Noise in 3D sensor (epipolar method uses image coordinates directly)

Automatic calibration

- > Mouse clicking is tiresome and prone to inaccuracies
- > Automatic detection must consider laser artifacts in camera image:

Red dot detection algorithm

- > Capture background image (without laser)
- > Capture image with laser, subtract out background image
- > Keep red color channel only
- > Threshold pixels
- > Compute weighted center of mass (x, y) over entire image
- > Recompute using a window around (x, y)

Results

Point Selection

- > Currently specify laser coordinates
 - > choose/detect corresponding image coordinate
- > Stereo camera only provides sparse depth
 - > Points without depth are thrown away during calibration
- > Can we specify image coordinates, then move laser to match?
 - > manual control laborious
 - > automatic control (chicken and egg problem?)

Image Point Selection

- > Algorithm:
 - 1. Measure distance between laser & target
 - **2.** Move $\alpha \cdot \mathbf{x}.\mathbf{distance}, \beta \cdot \mathbf{y}.\mathbf{distance}$
 - 3. Repeat until distance = 0
 - 4. α, β are constants determined empirically to minimize distance
- > Will probably only work if coordinate systems are roughly aligned.
- > Highly unsophisticated instance of visual servoing methodolgy.
 - > could be easily improved to be more robust

Experimental Procedure

- > Use chessboard corners as calibration points
 - > Take advantage of automatic corner detection
- > Repeat for 4 positions
 - > Use 8 points at each position

Results

Washington University in St.Louis School of Engineering & Applied Science

Discussion

- > Both manual and automatic calibration show improvement with inverse selection.
- > Point selection is more important than number of calibration points.
- > Improvement possibly due to sub-pixel accuracy of corner detection.

Overall Discussion

- > The best overall average accuracy achieved is around 2.5 mm.
- > Good, but not perfect bias.

Washington University in St.Louis School of Engineering & Applied Science

Future Work

- > Identify and model non-linearity in laser unit.
- > Evaluate in comparison to visual servoing as an alternative targeting approach.

Conclusion

- > Two calibration methods
 - > Verified by experimental results to 3-4 mm accuracy
- > Automatic laser point detection
- > Image point correspondence
 - > Verified by experimental results to 2.5 mm accuracy

Acknowledgements

- > Technical Support Working Group (TSWG) for funding the project encompassing this work.
- > Drs. Bill Smart and Robert Pless for advising.
- > Michael Dixon for red dot detection algorithm.
- > Rachel Whipple for data entry.

