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Motivating Applications

Mixed membership clustering of document copora:

» e.g., document — words

Modeling consumer behaviour for marketing data:

» e.g., households — trips — products

Fraud detection in telecommunications:

> e.g., users — call features

Protein function prediction:

» e.g., mixed membership of proteins to functional modules

Object detection/recognition in images:

> e.g., images — feature patches



Connections to other Surveys

Collective classification:
» discriminative vs. generative
» Edo’s talk, missing link model [Cohn and Hofmann, 2001]

Entity resolution:
» LDA-ER

Group Detection Surveys:
» Stochastic Block Models

» Clustering in Relational Data/Community Detection
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Plate Notation: A Slacker's Day Planner

mood: upbeat, bored, sad
activities: go to sleep, watch TV, go to
pub, go to beach, go bowling
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Unigram Model and Mixture of Unigrams

Unigram Model Mixture of Unigrams

Disadvantages:

» Does not model documents dealing with a mixture of topics.

Mixture of Unigrams:
> Also known as, naive bayes model [McCallum and Nigam, 1998]

» Generative single class classification model



PLSI: Mixture Model for Text [Hofmann, 1999]
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Advantage:
» First mixture model for documents
Disadvantage:
» Mixture parameters for each document, too many parameters

» Poor generalization properties



Problems with PLSI

2-D simplex showing the space of document mixtures for 3 topics

PLSI LDA



Latent Dirichlet Allocation [Blei et al, 2003]
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Generative process:
» Choose 6 ~ Dir(«)

» For each word in doc:

> Choose topic z ~ mult(0)
> Choose word w ~ mult(¢;)

# of Documents

# of Words

# of Topics

Generated word

Topic of word w

Distribution of topics

Distribution of words given topic z
Dirichlet parameter

Dirichlet parameter
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Discriminative vs. Generative

Word topics Document mixtures
l arts [ budget [ education l > 097057 ..... wanted to play jazz
new million school
film tax students » 6i1g83: .... play ... performed ...
show program schools stage
music budget education B
movie billion teachers > 0213590 ... don and jim play the
play federal high game ....
musical year public » The 0’s estimated for each
best spending teacher document can be used as a low
dim. rep. for the doc., can be
used to classify the docs.



Gibbs Sampling for LDA [Griffiths and Steyvers, 2004]

prob. of z in doc containing w;

wi
Pz —llzjow) = O
2w i+ WB
—_———
prob. of w; under topic j
» Perform burn-in

v

Run iterations of the Gibbs sampler collecting samples after regular intervals

v

For each iteration:

> For word w; in corpus, sample z; from P(z; = jlz—;, w)

v

Straightforward to recover €'s and ¢'s after Gibbs sampler has converged



About LDA and Gibbs Sampling

Why dirichlet?

» Conjugate prior of multinomial. Lets you analytically integrate over 6 and ¢.

Why multinomial?
» Legacy reasons.

» Multinomial does not model bursty nature of text [Madsen et al, 2005].

Gibbs sampling vs. variational methods:

» Gibbs sampling is slower (takes days for mod.-sized datasets), variational
inference takes a few hours.

» Gibbs sampling is more accurate.

Gibbs sampling convergence is difficult to test, although quite a few machine
learning approximate inference techniques also have the same problem.

> More sophisticated Gibbs Sampling based on split/merge techniques are
available (see [Jain and Neal, 2000]).
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The Missing Link [Cohn and Hofmann, 2001]

PLSI 1999

Missing Link 2001

LSA 1990

PHITS 2000 HITS 1998

Figure: Document topics are influenced by citations as well as content.



The Missing Link [Cohn and Hofmann, 2001]

SR EIE

Generated word
Topic of word w
Generated link
Topic of link ¢
# of Words

# of Links

# of Documents

Generative Process
For each of M documents d,

» For each of N words in
document d, draw:
» Topic z, from
P(topic|doc)
» Word w from
P(word|topic)
» For each of L links in
document d, draw:
» Topic z. from
P(topic|doc)
» Link ¢ from
P(link|topic)



The Missing Link [Cohn and Hofmann, 2001]

Summary
> Joint probabilistic model for content and links.
> Interpolates between PLSA and PHITS
» Improves classification accuracy over standard PLSA and PHITS on
Cora and WebKB.
Limitations

» Suffers from same over-fitting problems of PLSA

> Performance is dependent on o weighting term



The Missing Link

Questions?



Author Topic Model [Rosen-Zvi, et al. 2004]
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Author Topic Model [Rosen-Zvi, et al. 2004]
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Generated word

Topic of word w
Author of word w
Authors of document d

>=zz

T

— : ) Generative process:

» Choose 0 ~ Dir(a)
» Choose ¢ ~ Dir(3)

o

# of Documents
# of Words

# of Authors

# of Topics

Distribution of topics given author x
Distribution of words given topic z

Dirichlet parameter
Dirichlet parameter

» For each word w in doc d:

>

Given the set of authors,
aq, choose an author x
uniformly from aq.

Choose topic z ~ mult(6x)
0y is author specific
Choose word w ~ mult(¢z)
¢ is topic specific



Author Topic Model

TOPIC 10 TOPIC 209 TOPIC 87 TOPIC 20
WORD PROB. WORD PROB. WORD PROB. WORD PROB.
SPEECH 0.1134 PROBABILISTIC 0.0778 USER 0.2541 STARS 0.0164
RECOGNITION ~ 0.0349 BAYESIAN  0.0671 INTERFACE  0.1080 OBSERVATIONS 0.0150
WORD 0.0295 PROBABILITY  0.0532 USERS 0.0788 SOLAR 0.0150
SPEAKER  0.0227 CARLO 0.0309 INTERFACES ~ 0.0433 MAGNETIC 00145
ACOUSTIC  0.0205 MONTE 0.0308 GRAPHICAL 00392 RAY 00144
RATE 0.0134 DISTRIBUTION  0.0257 INTERACTIVE ~ 0.0354 EMISSION 00134
SPOKEN 0.0132 INFERENCE ~ 0.0253 INTERACTION ~ 0.0261 GALAXIES 00124
SOUND 0.0127 PROBABILITIES 0.0253 VISUAL 0.0203 OBSERVED  0.0108
TRAINING  0.0104 CONDITIONAL ~ 0.0229 DISPLAY 00128 SUBJECT  0.0101
Music 0.0102 PRIOR 0.0219 MANIPULATION  0.0099 STAR 0.0087
AUTHOR PROB. AUTHOR __ PROB. AUTHOR PROB. AUTHOR PROB.
Waibel_A 0.0156 Friedman_N  0.0094 Shneiderman_B  0.0060 Linsky_J 00143
Gauvain_J 0.0133 Heckerman D 0.0067 Rauterberg M 0.0031 Falcke_H 0.0131
Lamel L 0.0128 Ghahramani_Z ~ 0.0062 Lavana_H 0.0024 Mursula K 0.0089
Woodland P 0.0124 Koller_D 0.0062 Pentland_A  0.0021 Butler_R 0.0083
Ney_H 0.0080 Jordan_M  0.0059 Myers_B 0.0021 Bjorkman K 0.0078
Hansen_J 0.0078 Neal R 0.0055 Minas_M 0.0021 Knapp_G 0.0067
Renals_S 0.0072 Raftery A 0.0054 Burnett_M 0.0021 Kundu_M 0.0063
Noth_E 0.0071 Lukasiewicz_T ~ 0.0053 Winiwarter W 0.0020 Christensen-J ~ 0.0059
Boves_L 0.0070 Halpem_J  0.0052 Chang_S 0.0019 Cranmer S 0.0055
Young_S 0.0069 Muller_P. 0.0048 Korvemaker B 0.0019 Nagar N 0.0050

Figure: An illustration of 4 topics from a 300-topic solution for the CiteSeer
collection. Each topic is shown with the 10 words and authors that have the
highest probability conditioned on that topic [Rosen-Zvi, et al. 2004].



Author Topic Model

Summary

» Similar to LDA, but assumes that a topic z is generated by author x
from the author-specific topic distribution 6.

> Increased descriptive ability in applications using authorship
information.

> Automated reviewer recommendation for research papers
» Predictive ability is better than LDA with small training sets.
> But LDA improved with a larger training set and more topics



Hierarchical Topic Models

Observation
Topics aren’t independent.

Example

» The topic of CS consists of Al, Systems, Theory, etc.

» Al consists of NLP, Machine Learning, Robotics, Vision, etc.

Question
How to encode dependencies between topics?



Pachinko Allocation Model[Li et al, 2006]

Root Topic (1)

Sub Topics (S3)

B Words (w)

Figure: Four-level Pachinko Model



Pachinko Allocation
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Figure: Pachinko Machine — A path of the ball is shown in red.

From http://wuw.freepatentsonline.com/6619659.html


http://www.freepatentsonline.com/6619659.html

Pachinko Allocation Model

Generative Process

» For each topic, sample

0 ~ Dir(«)

% » For each word w in the
S document,

» Sample topic path z,

&
9®

@ o starting at the root topic
N Sy node and terminating at
M a leaf node. Each
z; ~ mult(6).
Figure: 4-level Pachinko Model » Sample word w from

mult(0) of the last last
topic along the path

w Generated word M # of Documents
Zw1 Root topic N # of Words
Zw2 Super topic S # of Super topics

Zuw3 Sub topic S, # of Sub topics



Pachinko Allocation Model

speech agents scheduling —
language recognition agent tasks dlsl|:|huled
gram: mar text plan o task ¢ ime
dialogue word actions scheduler applnua_r:aqb
statistical words planning schedule communication
semantic 8 network
25 13 2
abstract 5 performance
data based 27 4 parallel
clustering T paper memory
mining approach processors
cluster present cache
sets
network
database > N networks
relational m O'm;““" web nodes
databases el server routing
relationships query client traffic
sql data .
» document .hle
performance

Figure: Discovered topics (circles), sub-topics (squares), and their
dependencies (Figure from [Li et al, 2006]).



Pachinko Allocation Model

Summary

Fixed tree of topics, word distributions as leaves
Captures arbitrary, sparse and nested correlations between topics.

Use Gibbs Sampling for inference and parameter estimation.

vV v v Y

Better performance than competing models:

> Derived more intuitive topics than LDA on NIPS dataset (according
to human judges)

» Higher likelihood than LDA, CTM and HDP on NIPS dataset

» Higher document classification accuracy than LDA on 20 newsgroup
dataset.

Limitations
» Number of topics is fixed

» Depth of tree must be pre-specified



Other Hierarchical Models
Hierarchical LDA[Blei, et al. 2003]

» A document is generated by sampling words from the topics along a
single path from the root to leaf node of a topic tree.

> Tree depth L is fixed, the # of topics is inferred using a nested CRP.

Correlated Topic Model[Blei and Laferty, 2006]

» Similar to LDA, but uses Logistic Gaussian prior instead of Dirichlet.

> Not really hierarchical
» Covariance matrix ¥ models pair-wise correlation

» Many parameters to estimate — ¥ grows with the square of the
number of topics — slow inference.
Nonparametric Bayes Pachinko Allocation[Li et al, 2007]

» Similar to PAM, uses Hierarchical Dirichlet Process to infer # of
topics



Beyond Bag of Words

Bag of Words Assumption
Assumes that words order in a document is irrelevant.

> It is mathematically convenient, but not strictly true!!!

Problem
Under these models all of the following sentences are equally likely:

> the department chair couches offers
» the department chair offers couches

» couches the chair department offers

Solution
Explicitly incorporate word order into graphical model.



Bigram Topic Model [Wallach, 2006]

Summary

» Similar to LDA, except
distribution of word w;
is dependent on the
topic and the previous
word w;_1.



Bigram Topic Model [Wallach, 2006]
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Generative Process

» for each topic, word pair (z, w),

draw a discrete distribution o,
from a Dirichlet prior §

for each document d, draw a
discrete distribution 6(¢)

For each position i in document
d, draw:
a topic z,.(d) from Discrete( (%) )

a word WI-(d) from Discrete( oz )



Bigram Topic Model

LDA Topic Model

Bigram Topic Model

the i that easter party god “number” the
“number” is proteins ishtar arab believe the to
in satan the a power about tower a
to the of the as atheism clock and
espn which to have arabs gods a of
hockey and i with political before power i
a of if but are see motherboard is
this metaphorical “number” english rolling atheist mhz “number”
as evil you and london most socket it
run there fact is security shafts plastic that
Figure: Comparison of discovered topics between

(From [Wallach, 2006])

LDA and Bigram model




Bigram Topic Model

Performance

» Lower Information Rate than LDA for Psychology Abstracts dataset
and 20 Newsgroups Dataset

» 10-20s per Gibbs iteration (at 60 topics)

Limitations

» Simple model, always generates a bigram.
» Many parameters to infer



LDA Composite Model [Griffiths et al, 2004]

Summary
» Similar to Bigram model, but

overlays an HMM over the
word sequence.

> Allows integration of syntactic
models.

o
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» Empirical Performance:

> Higher quality topics than LDA
> Likelihood of held out data is
higher than LDA

Part of speech tagging
significantly better than HMM

@O
o

N D) and Distributional Clustering
for 10 high-level tags.
Figure: LDA Composite Plate > Somewhat worse performance
Model on document classification task

than LDA.



Topic Models: Extensions

Questions?



Application: Object Recognition in Images

General Goal
Given an image, determine if it contains a particular object

Approach

Model a database of labeled images using mixtures of topics, where:
» Each image is a document
» Image feature patches correspond to visual words

» Each object class label corresponds to a distribution of topics.



Application: Object Recognition in Images

2. Codewords dictionary formation
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Slides from [CVPR 2007 Short Course on Object Recognition]



Application: Object Recognition in Images

Image patch examples of codewords

il ||y
S0 Walala

Sivic et al. 2005

Slides from [CVPR 2007 Short Course on Object Recognition]



Application: Object Recognition in Images

3. Image representation

frequency

L

PLONERLS B

codewords

Slides from [CVPR 2007 Short Course on Object Recognition]



Application: Object Recognition in Images

Case #2: Hierarchical Bayesian
text models

“beach”

Soiel

D

Fei-Fei et al. ICCV 2005

Slides from [CVPR 2007 Short Course on Object Recognition]



Application: Object Recognition in Images

Learning
Use variational bayes or MCMC to learn:
» 3 - a matrix which encodes the probability of observing a codeword
w conditioned on a topic z.
» 0 - a matrix which encodes the Dirichlet parameters for each image
class.

Classification
For an unknown image x, want to determine the image class ¢ that has
the highest likelihood of generating x:
Image class ¢ = argmax.p(x|c, 8, 3)
» Must integrate over hidden variables 7, z

» Intractable — must resort to approximate methods (again)



Application: Object Recognition in Images
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Figure: Models of 3 image categories. From [Fei-Fei and Perona, 2005]



Application: Object Recognition in Images

Figure: Examples of testing images for each category. From
[Fei-Fei and Perona, 2005]



Questions?
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