Topic Models (Generative Clustering Models)

Roman Stanchak and Prithviraj Sen

CMSC828G, Instructor: Prof. Lise Getoor

24th April, 2008.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Introduction

Motivating Applications Connections to other Surveys

Topic Models

Plate Notation Earlier Topic Models Latent Dirichlet Allocation

Extensions and Applications

Modeling multiple influences Hierarchical Topic Models Beyond Bag of Words Application: Object Recognition in Images

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction Motivating Applications Connections to other Surveys

Topic Models

Plate Notation Earlier Topic Models Latent Dirichlet Allocation

Extensions and Applications

Modeling multiple influences Hierarchical Topic Models Beyond Bag of Words Application: Object Recognition in Images

Motivating Applications

Mixed membership clustering of document copora:

• e.g., document \rightarrow words

Modeling consumer behaviour for marketing data:

▶ e.g., households \rightarrow trips \rightarrow products

Fraud detection in telecommunications:

 $\blacktriangleright\,$ e.g., users \rightarrow call features

Protein function prediction:

e.g., mixed membership of proteins to functional modules

Object detection/recognition in images:

• e.g., images \rightarrow feature patches

Connections to other Surveys

Collective classification:

- discriminative vs. generative
- Edo's talk, missing link model [Cohn and Hofmann, 2001]

Entity resolution:

LDA-ER

Group Detection Surveys:

- Stochastic Block Models
- Clustering in Relational Data/Community Detection

Outline

Introduction

Motivating Applications Connections to other Surveys

Topic Models

Plate Notation Earlier Topic Models Latent Dirichlet Allocation

Extensions and Applications

Modeling multiple influences Hierarchical Topic Models Beyond Bag of Words Application: Object Recognition in Images

Plate Notation: A Slacker's Day Planner

Unigram Model and Mixture of Unigrams

W

Unigram Model

Mixture of Unigrams

Disadvantages:

Does not model documents dealing with a mixture of topics.

Mixture of Unigrams:

- Also known as, naive bayes model [McCallum and Nigam, 1998]
- Generative single class classification model

PLSI: Mixture Model for Text [Hofmann, 1999]

Advantage:

First mixture model for documents

Disadvantage:

- Mixture parameters for each document, too many parameters
- Poor generalization properties

Problems with PLSI

2-D simplex showing the space of document mixtures for 3 topics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Latent Dirichlet Allocation [Blei et al, 2003]

Generative process:

- Choose θ ~ Dir(α)
- For each word in doc:
 - Choose topic $z \sim mult(\theta)$
 - Choose word $w \sim mult(\phi_z)$
- M # of Documents
- N # of Words
- T # of Topics
- w Generated word
- z Topic of word w
- θ Distribution of topics
- ϕ_z Distribution of words given topic z

- α Dirichlet parameter
- β Dirichlet parameter

Discriminative vs. Generative

Word topics

arts	budget	education		
new	million	school		
film	tax	students		
show	program	schools		
music	budget	education		
movie	billion	teachers		
play	federal	high		
musical	year	public		
best	spending	teacher		
:	:	:		
•	•	•		

Document mixtures

- θ₂₉₇₉₅: wanted to play jazz
- θ₁₈₈₃: play ... performed ...
 stage
- θ₂₁₃₅₉: don and jim play the game
- The θ's estimated for each document can be used as a low dim. rep. for the doc., can be used to classify the docs.

Gibbs Sampling for LDA [Griffiths and Steyvers, 2004]

$$P(z_{i} = j | \mathbf{z}_{-j}, \mathbf{w}) = \underbrace{\frac{n_{-i,j}^{w_{i}} + \beta}{\sum_{w_{i}} n_{-i,j}^{w_{i}} + W\beta}}_{\text{prob. of } w_{i} \text{ under topic } j} \underbrace{\frac{n_{-i,j}^{d_{i}} + \alpha}{\sum_{j} n_{-i,j}^{d_{i}} + T\alpha}}_{\text{prob. of } w_{i} \text{ under topic } j}$$

Perform burn-in

Run iterations of the Gibbs sampler collecting samples after regular intervals

For each iteration:

For word w_i in corpus, sample z_i from $P(z_i = j | \mathbf{z}_{-i}, \mathbf{w})$

Straightforward to recover θ 's and ϕ 's after Gibbs sampler has converged

About LDA and Gibbs Sampling

Why dirichlet?

• Conjugate prior of multinomial. Lets you analytically integrate over θ and ϕ .

Why multinomial?

- Legacy reasons.
- Multinomial does not model bursty nature of text [Madsen et al, 2005].

Gibbs sampling vs. variational methods:

- Gibbs sampling is slower (takes days for mod.-sized datasets), variational inference takes a few hours.
- Gibbs sampling is more accurate.
- Gibbs sampling convergence is difficult to test, although quite a few machine learning approximate inference techniques also have the same problem.

 More sophisticated Gibbs Sampling based on split/merge techniques are available (see [Jain and Neal, 2000]).

Outline

Introduction

Motivating Applications Connections to other Surveys

Topic Models

Plate Notation Earlier Topic Models Latent Dirichlet Allocation

Extensions and Applications

Modeling multiple influences Hierarchical Topic Models Beyond Bag of Words Application: Object Recognition in Images

The Missing Link [Cohn and Hofmann, 2001]

Figure: Document topics are influenced by citations as well as content.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Missing Link [Cohn and Hofmann, 2001]

- w Generated word
- zw Topic of word w
- c Generated link
- z_c Topic of link c
- N # of Words
- L # of Links
- M # of Documents

Generative Process

For each of M documents d,

- For each of N words in document d, draw:
 - Topic z_w from P(topic|doc)
 - Word w from
 P(word|topic)
- For each of L links in document d, draw:
 - Topic z_c from P(topic|doc)
 - Link c from P(link|topic)

The Missing Link [Cohn and Hofmann, 2001]

Summary

- Joint probabilistic model for content and links.
- Interpolates between PLSA and PHITS
- Improves classification accuracy over standard PLSA and PHITS on Cora and WebKB.

Limitations

- Suffers from same over-fitting problems of PLSA
- \blacktriangleright Performance is dependent on α weighting term

The Missing Link

Questions?

Author Topic Model [Rosen-Zvi, et al. 2004]

Figure: Authors influence topic selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Author Topic Model [Rosen-Zvi, et al. 2004]

- w Generated word
- z Topic of word w
- x Author of word w
- ad Authors of document d
- θ_{x} Distribution of topics given author x
- ϕ_{τ} Distribution of words given topic z
- α Dirichlet parameter
- β Dirichlet parameter

- # of Documents
- # of Words

М

N

Α

Т

- # of Authors
- # of Topics

- Generative process:
 - Choose $\theta \sim Dir(\alpha)$
 - Choose φ ~ Dir(β)
 - For each word *w* in doc *d*:
 - Given the set of authors, *a*_d, choose an author x uniformly from *a*_d.
 - Choose topic z ~ mult(θ_x)
 θ_x is author specific
 - Choose word w ~ mult(φ_z)
 φ_z is topic specific

Author Topic Model

TOPIC 10		TOPIC 209		TOPIC 87		TOPIC 20	
WORD	PROB.	WORD	PROB.	WORD	PROB.	WORD	PROB.
SPEECH	0.1134	PROBABILISTIC	0.0778	USER	0.2541	STARS	0.0164
RECOGNITION	0.0349	BAYESIAN	0.0671	INTERFACE	0.1080	OBSERVATIONS	0.0150
WORD	0.0295	PROBABILITY	0.0532	USERS	0.0788	SOLAR	0.0150
SPEAKER	0.0227	CARLO	0.0309	INTERFACES	0.0433	MAGNETIC	0.0145
ACOUSTIC	0.0205	MONTE	0.0308	GRAPHICAL	0.0392	RAY	0.0144
RATE	0.0134	DISTRIBUTION	0.0257	INTERACTIVE	0.0354	EMISSION	0.0134
SPOKEN	0.0132	INFERENCE	0.0253	INTERACTION	0.0261	GALAXIES	0.0124
SOUND	0.0127	PROBABILITIES	0.0253	VISUAL	0.0203	OBSERVED	0.0108
TRAINING	0.0104	CONDITIONAL	0.0229	DISPLAY	0.0128	SUBJECT	0.0101
MUSIC	0.0102	PRIOR	0.0219	MANIPULATION	0.0099	STAR	0.0087
AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.	AUTHOR	PROB.
Waibel_A	0.0156	Friedman_N	0.0094	Shneiderman_B	0.0060	Linsky_J	0.0143
Gauvain_J	0.0133	Heckerman_D	0.0067	Rauterberg_M	0.0031	Falcke_H	0.0131
Lamel_L	0.0128	Ghahramani_Z	0.0062	Lavana_H	0.0024	Mursula_K	0.0089
Woodland_P	0.0124	Koller_D	0.0062	Pentland_A	0.0021	Butler_R	0.0083
Ney_H	0.0080	Jordan_M	0.0059	Myers_B	0.0021	Bjorkman_K	0.0078
Hansen_J	0.0078	Neal_R	0.0055	Minas_M	0.0021	Knapp_G	0.0067
Renals_S	0.0072	Raftery_A	0.0054	Burnett_M	0.0021	Kundu_M	0.0063
Noth_E	0.0071	Lukasiewicz_T	0.0053	Winiwarter_W	0.0020	Christensen-J	0.0059
Boves_L	0.0070	Halpern_J	0.0052	Chang_S	0.0019	Cranmer_S	0.0055
Young_S	0.0069	Muller_P	0.0048	Korvernaker_B	0.0019	Nagar_N	0.0050

Figure: An illustration of 4 topics from a 300-topic solution for the CiteSeer collection. Each topic is shown with the 10 words and authors that have the highest probability conditioned on that topic [Rosen-Zvi, et al. 2004].

Author Topic Model

Summary

- Similar to LDA, but assumes that a topic z is generated by author x from the author-specific topic distribution θ_x .
- Increased descriptive ability in applications using authorship information.
 - Automated reviewer recommendation for research papers
- Predictive ability is better than LDA with small training sets.
 - But LDA improved with a larger training set and more topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Hierarchical Topic Models

Observation Topics aren't independent.

Example

- ► The topic of CS consists of AI, Systems, Theory, etc.
- ► AI consists of NLP, Machine Learning, Robotics, Vision, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

How to encode dependencies between topics?

Pachinko Allocation Model[Li et al, 2006]

Figure: Four-level Pachinko Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pachinko Allocation

Figure: Pachinko Machine – A path of the ball is shown in red.

From http://www.freepatentsonline.com/6619659.html

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pachinko Allocation Model

Figure: 4-level Pachinko Model

of Documents
of Words
of Super topics

of Sub topics

W	Generated word	М
Z_{W1}	Root topic	N
Z_{w2}	Super topic	S_1

 z_{w3} Sub topic S_2

- Generative Process
 - For each topic, sample
 θ ~ Dir(α)
 - For each word w in the document,
 - Sample topic path z_w starting at the root topic node and terminating at a leaf node. Each z_i ~ mult(θ).
 - Sample word w from mult(θ) of the last last topic along the path

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Pachinko Allocation Model

Figure: Discovered topics (circles), sub-topics (squares), and their dependencies (Figure from [Li et al, 2006]).

Pachinko Allocation Model

Summary

- Fixed tree of topics, word distributions as leaves
- ► Captures arbitrary, sparse and nested correlations between topics.
- Use Gibbs Sampling for inference and parameter estimation.
- Better performance than competing models:
 - Derived more intuitive topics than LDA on NIPS dataset (according to human judges)
 - Higher likelihood than LDA, CTM and HDP on NIPS dataset
 - Higher document classification accuracy than LDA on 20 newsgroup dataset.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Limitations

- Number of topics is fixed
- Depth of tree must be pre-specified

Other Hierarchical Models

Hierarchical LDA[Blei, et al. 2003]

- A document is generated by sampling words from the topics along a single path from the root to leaf node of a topic tree.
- Tree depth L is fixed, the # of topics is inferred using a nested CRP.

Correlated Topic Model[Blei and Laferty, 2006]

- Similar to LDA, but uses Logistic Gaussian prior instead of Dirichlet.
 - Not really hierarchical
 - Covariance matrix Σ models pair-wise correlation
- Many parameters to estimate Σ grows with the square of the number of topics → slow inference.

Nonparametric Bayes Pachinko Allocation[Li et al, 2007]

 Similar to PAM, uses Hierarchical Dirichlet Process to infer # of topics

Beyond Bag of Words

Bag of Words Assumption

Assumes that words order in a document is irrelevant.

It is mathematically convenient, but not strictly true!!!

Problem

Under these models all of the following sentences are equally likely:

- the department chair couches offers
- the department chair offers couches
- couches the chair department offers

Solution

Explicitly incorporate word order into graphical model.

Bigram Topic Model [Wallach, 2006]

Summary

Similar to LDA, except distribution of word w_i is dependent on the topic and the previous word w_{i-1}.

・ロト ・ 雪 ト ・ ヨ ト

э

Bigram Topic Model [Wallach, 2006]

Generative Process

- for each topic, word pair (z, w), draw a discrete distribution σ_{zw} from a Dirichlet prior δ
- for each document *d*, draw a discrete distribution θ^(d)
- For each position i in document d, draw:
 - a topic $z_i^{(d)}$ from Discrete($\theta^{(d)}$) a word $w_i^{(d)}$ from Discrete(σ_{zw})

Bigram Topic Model

LDA Topic Model

Bigram Topic Model

the	i	that	easter	party	god	"number"	the
"number"	is	proteins	ishtar	arab	believe	the	to
in	satan	the	а	power	about	tower	а
to	the	of	the	as	atheism	clock	and
espn	which	to	have	arabs	gods	а	of
hockey	and	i	with	political	before	power	i
a	of	if	but	are	see	motherboard	is
this	metaphorical	"number"	english	rolling	atheist	mhz	"number"
as	evil	you	and	london	most	socket	it
run	there	fact	is	security	shafts	plastic	that

Figure: Comparison of discovered topics between LDA and Bigram model (From [Wallach, 2006])

Bigram Topic Model

Performance

 Lower Information Rate than LDA for Psychology Abstracts dataset and 20 Newsgroups Dataset

10-20s per Gibbs iteration (at 60 topics)

Limitations

- Simple model, always generates a bigram.
- Many parameters to infer

LDA Composite Model [Griffiths et al, 2004]

Figure: LDA Composite Plate Model

Summary

- Similar to Bigram model, but overlays an HMM over the word sequence.
 - Allows integration of syntactic models.
- Empirical Performance:
 - Higher quality topics than LDA
 - Likelihood of held out data is higher than LDA
 - Part of speech tagging significantly better than HMM and Distributional Clustering for 10 high-level tags.
 - Somewhat worse performance on document classification task than LDA.

Topic Models: Extensions

Questions?

General Goal

Given an image, determine if it contains a particular object

Approach

Model a database of labeled images using mixtures of topics, where:

- Each image is a document
- Image feature patches correspond to visual words
- Each object class label corresponds to a distribution of topics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Slides from [CVPR 2007 Short Course on Object Recognition]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Slides from [CVPR 2007 Short Course on Object Recognition]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Slides from [CVPR 2007 Short Course on Object Recognition]

Slides from [CVPR 2007 Short Course on Object Recognition]

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Learning

Use variational bayes or MCMC to learn:

- β a matrix which encodes the probability of observing a codeword w conditioned on a topic z.
- \blacktriangleright θ a matrix which encodes the Dirichlet parameters for each image class.

Classification

For an unknown image x, want to determine the image class c that has the highest likelihood of generating x:

```
Image class c = argmax_c p(x|c, \theta, \beta)
```

- Must integrate over hidden variables π, z
- Intractable \rightarrow must resort to approximate methods (again)

Figure: Models of 3 image categories. From [Fei-Fei and Perona, 2005]

э

イロト イポト イヨト イヨト

(日) (同) (日) (日)

Figure: Examples of testing images for each category. From [Fei-Fei and Perona, 2005]

Questions?

References

D. M. Blei, A. Y. Ng and M. I. Jordan. Latent Dirichlet Allocation. *JMLR*, 2003.

D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic models and the nested Chinese restaurant process. NIPS 2003.

D. Blei and J. Laferty. Correlated Topic Models. NIPS 2006.

- D. Cohn and T. Hofmann. The missing link a probabilistic model of document content and hypertext connectivity. *NIPS*, 2001.
- T. Hofmann. Probabilistic Latent Semantic Indexing. SIGIR, 1999.

- M. Steyvers and T. L. Griffiths. Probabilistic Topic Models. In *Latent Semantic Analysis: A Road to Meaning*.
- T. L. Griffiths and M. Steyvers. Finding Scientific Topics. PNAS, 2004.

- TL Griffiths, M Steyvers, D Blei, JB Tenenbaum. Integrating Topics and Syntax. *NIPS* 2004.
- A. Mccallum and K. Nigam. A Comparison of Event Models for Naive Bayes Text Classification. AAAI-98 Workshop on Learning for Text Categorization, 1998.

References (cont)

- L. Fei-Fei, P. Perona. A Bayesian Hierarchical Model for Learning Natural Scene Categories. *CVPR 2005.*
- R. Madsen, D. Kauchak and C. Elkan. Modeling Word Burstiness using the Dirichlet Distribution. ICML, 2005.
- Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations. W. Li and A. McCallum. ICML 2006.
 - Nonparametric Bayesian Pachinko Allocation. W. Li, D. Blei and A. McCallum. UAI 2007.
- M Rosen-Zvi, T Griffiths, M Steyvers and P Smyth. The Author-Topic Model for Authors and Documents. UAI 2004.
- H. Wallach. Topic modeling: beyond bag-of-words. ICML 2006.
- L. Fei Fei. Bag of words models. CVPR 2007 Short Course. Presentation Slides. http://vision.cs.princeton.edu/documents/CVPR2007_tutorial_bag_ of_words.ppt