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We present a 3D laser targeting system. The goal of the system is to aim a

laser pointer at a specific point in the environment using observations from a stereo

camera. Control systems of this type are typically closed-loop feedback architectures

that require accurate knowledge of where the laser pointer is in the world. To avoid

this detection step, we present two algorithms to solve for the direct transforma-

tion between a target point in 3D coordinates and the controls required to move the

laser to that point. One algorithm solves for the transformation matrix directly us-

ing corresponding laser and 3D camera coordinates. The other utilizes the epipolar

constraint between laser coordinates and 2D image coordinates to solve for the trans-

formation. Although these algorithms are adapted from camera calibration literature,

our application of them to this task is novel. In addition to these algorithms, we dis-

cuss the implementation of an automated calibration strategy designed to minimize

operator intervention. Experimental results verify our approach and show the two

algorithms comparable in accuracy. Our automated calibration strategy is shown to

be comparable to a manual calibration.
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Chapter 1

Introduction

The goal of this work is the automatic positioning of a laser pointer in the environ-

ment using a stereo camera (Figure 1.1). LASERs (Light Amplification by Stimulated

Emission of Radiation) have seen a variety of uses in autonomous systems. They have

been used for measurement purposes – vibration, distance, velocity. They also have

been used as a guide for human action, such as in surgery or industrial applications.

Enabling fine control of the laser pointer in such applications is an important goal.

A necessary aspect of our solution is the stereo camera. In a one camera system,

there is an inherent ambiguity between depth and scale that requires assumptions

to be made about the environment. With a two camera system, this ambiguity is

resolved, and the assumptions relaxed.

Laser Unit

Target

Laser Dot

Figure 1.1: Laser Targeting System
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We present two algorithms to solve for the transformation between image coordi-

nates and laser controls in order to automatically position the laser pointer in the

environment. Although these techniques are adapted from the camera calibration

literature, their application in this setting is novel.

The rest of this document is structured as follows: Chapter 2 discusses related work;

Chapter 3 presents background information relevant to the understanding of our cal-

ibration approach; Chapter 4 introduces our calibration algorithms. Implementation

of our system is discussed in Chapter 5. Chapter 6 outlines the experiments per-

formed and the results. Finally, Chapter 7 summarizes our findings and mentions

future directions for our work.
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Chapter 2

Related Work

The task of directing a laser point to a specific point in the environment is related

to visual servoing [17]. Visual servoing describes a closed loop control method for

controlling a robotic manipulator using a camera image. We are not aware of any

work to control a laser directly. However, lasers have been used as a visual aide in

visual servoing [19] [2].

Closely related to visual servoing is the field of active vision, which involves dy-

namically adjustable camera systems. The literature describes a variety of systems

including networks of pan-able cameras for surveillance[9] [10] [22], and foveated sen-

sors for multiresolution imaging and perception [11] [28] [20].

A variety of literature also exists on the use of lasers projected onto a camera im-

age, primarily in the context of 3D modeling. Laser stripers determine structure by

sweeping a laser line across a scene and observing its relative position as it moves

[4][7][8][25]. Laser tracking methods project one or many laser points onto an image

and track their displacement as they are moved to compute structure [21]. These

methods all rely on the geometric relationship between the laser beam, its projection

on the camera image, and the camera location to recover the structure of the scene.

Other laser systems do not require a camera and instead rely on time of flight or phase

differencing [12] [3]. These systems have been used extensively for robot navigation

and mapping [16] [24].

Our work borrows significantly from camera calibration literature. Camera calibra-

tion techniques attempt to solve for intrinsic and extrinsic parameters of a camera in
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a variety of ways. Most relevant is work utilizing geometric relationships to derive

linear constraints and solving for the fundamental matrix [23][13][15][33][14].

As mentioned previously, our task is most related to visual servoing, but distinct

in how camera observations are utilized to control the laser. In visual servoing, the

error between the actual and desired position as observed in the camera image is used

as a feedback mechanism to a closed control loop. Visual servoing can be applied to

a more general set of control problems where the exact transformation mapping ob-

servation to action is not known or easily solveable. Our task is a more simple case

that allows us to solve for this transformation exactly and bypass the visual servo

feedback loop.
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Chapter 3

Background

This section introduces notation and concepts relevant to the description of our al-

gorithm for controlling a laser pointer using a stereo camera.

3.1 Laser Model

We model our laser control architecture as a black box with two input parameters

(u, v) that determine the direction X̂L of the laser beam. (u, v) are denoted laser

units (lu) and are assumed to lie in the interval [−1, 1], which defines their extreme

positions. The translation vector defining the source of the laser beam is constant,

and fixed at the origin of the laser unit coordinate system (i.e. it equals [0, 0, 0]).

From the vantage point of the laser unit, the z-axis is straight ahead, the y-axis is

up, and the x-axis is to the left (Figure 3.1).

z

xy

laser unit

XL

Figure 3.1: Laser coordinate system
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We model laser units as having a linear relationship to the direction of the laser beam:

xL =
[

u v 1
]T

wxL = AL
~XL

Where w is an arbitrary scale, AL is a 3×3 matrix, and ~XL is a 3D point in the laser

coordinate system. The direction of the laser beam is given by the normalized vector

X̂L. Note that xL is simply the homogeneous coordinate of ~xL.

3.2 Camera

Each camera is assigned a coordinate system with the origin at the center of projection

C and oriented similar to the laser - z-axis along the viewing axis of the camera, y-

axis up and x-axis left. We model our cameras as the standard pinhole perspective

C

m
Xc

Figure 3.2: Pinhole perspective projection camera model

projection (Figure 3.2). A 3d point in the camera coordinate system is notated ~XC ,

and that point projected on the camera image is denoted ~m, where:

sm = AC
~XC

m =
[

x y 1
]T

Where AC is a 3 × 3 matrix that encodes the camera intrinsic parameters (zoom,

skew, focal length, image center), m is the 3 × 1 homogeneous vector of ~m, and s

is the projective depth. The laser and camera coordinate system are related by a

rotation and translation, such that:

R ~XC + T = ~XL

Where R is a 3× 3 rotation matrix and T is a 3× 1 translation vector.
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By substituting for ~XL, we get the following relation between ~XC and xL:

AL(R ~XC + T) = wxL

By converting ~XC to homogeneous coordinates:

XC =
[

X Y Z 1
]T

This can be written as the matrix product:

HXC = wxL

Where H is the 3× 4 augmented matrix:

H = AL [R|T]

H is the direct transformation between 3D camera coordinates and laser units. Section

4.1 presents an algorithm to solve for H.

3.3 Multiple Cameras

The case of two cameras (Figure 3.3) is identical to that of a camera and laser. Each

camera (centered at C and C′) has its own 3D coordinate system, with points XC in

one camera’s coordinate system related to points X ′
C in the other by a rotation and

translation:

R ~XC + T = ~X ′
C

Plugging this into the projection equation for the homogeneous image point m′:

A′(R ~XC + T) = s′m′

Note that the projection equation can be rewritten as:

~XC = sA−1m
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C

m

Xc

m'

C'

(R,T)

Figure 3.3: Multiple cameras

Plugging this in above:

A′(R(sA−1m) + T) = s′m′

Rewriting:

m′ =
s

s′
A′RA−1m + A′T

This equation implies that m′ lies on the line l′ going through the points e′ = A′T

and A′R(A−1m) (see Figure 3.4)[27][14]. Three homogeneous points (x1,x2,x3) are

determined to be collinear in projective space[6] if:

xT
1 (x2 × x3) = 0

In other words,

m′T(A′T×A′R(A−1m)) = 0

Using the property that for a non-singular square matrix K, Ka×Kb = K∗(a× b),

where K∗ is the cofactor matrix of K and K∗ = det(K)(KT )−1, this becomes:

m′T(det(A′)(A′−T)(T×R(A−1m))) = 0

Where A′−T is shorthand for (A′T)−1.
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Then dividing out the det(A′):

m′T(A′−T(T×R(A−1m))) = 0

By defining the matrix [T] as follows (which is equivalent to the cross product):

[T] =


0 −t.z t.y

t.z 0 −t.x

−t.y t.x 0


This equation becomes:

m′TA′−T[T]RA−1m = 0

This matrix A′−T[T]RA−1 is called the Fundamental Matrix, denoted F, and the

following equation is called the Epipolar constraint[13][33]:

m′TFm = 0

We will use the Epipolar constraints between the laser beam and each camera to solve

for the transformation from image points to laser controls in Section 4.2.

C

m

Xc

m'

C'e'

l'

Figure 3.4: Epipolar constraint
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Chapter 4

Laser Calibration

The goal of the system is to solve for the laser controls necessary to send the laser

dot to point in space, specified in camera coordinates. We present two methods of

accomplishing this. The first solves for the transformation H directly, but requires,

as input, many examples of the 3D camera coordinates of the laser dot on the camera

image. The second is an indirect method that utilizes the epipolar constraint and

requires examples of corresponding 2D image coordinate of the laser dot in 2 or more

uncalibrated cameras.

4.1 Direct Calibration

As outlined in Section 3.2, the transformation between 3D camera coordinates and

laser units is modeled as a 3× 4 homography matrix, H.

H =


h1 h2 h3 h4

h5 h6 h7 h8

h9 h10 h11 h12



Where

HXC = wxL
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In order to solve for H, examples of corresponding ~xL and ~XC are collected. Each

correspondence provides three constraints on H of the form:

Xh1 + Y h2 + Zh3 + h4 = wxL

Xh5 + Y h6 + Zh7 + h8 = wyL

Xh9 + Y h10 + Zh11 + h12 = w

However, w is a free variable, so this is truly only two constraints on the parameters of

H. By substituting the third equation for w in the first two equations, w is eliminated

and the following two linear constraints remain:

Xh1 + Y h2 + Zh3 + h4 = xL(Xh9 + Y h10 + Zh11 + h12)

Xh5 + Y h6 + Zh7 + h8 = yL(Xh9 + Y h10 + Zh11 + h12)

By reorganizing terms and stacking constraints, we get a linear system of equation in

terms of H.

U~h = 0

Where

U =


X Y Z 1 0 0 0 0 −xLX −xLY −xLZ −xL

0 0 0 0 X Y Z 1 −yLX −yLY −yLZ −yL

...


~h =

[
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

]T

With 12 free variables, this system can be solved with 6 or more correspondences

between laser units and 3D camera coordinates. The trivial solution, ~h = 0 is not

useful, so we perform a singular value decomposition and choose ~h to be the eigen-

vector with the smallest non-zero eigenvalue [34]. The results for this method are

presented in Chapter 6.
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4.2 Epipolar Calibration Method

An alternate solution is to apply the epipolar constraint between the laser and camera.

The epipolar constraint is typically defined between corresponding points on two

images. However, by thinking of the laser beam as an inverted beam of light, it has

exactly the same behavior as a beam of light in the pinhole perspective camera model.

Therefore, by thinking of the laser as an inverse camera, and laser coordinates as pixel

coordinates on a virtual image, the epipolar constraint applies in the same way. As

a result, there exists a 3× 3 fundamental matrix F for which:

xT
LFm = 0

Where xL is a homogeneous laser coordinate ([u, v, 1]), and m is the homogeneous

image coordinate ([x, y, 1]) where the laser dot is projected. Each camera i adds an

additional constraint on xL:

xT
LFimi = 0

Computer Vision literature has examined the epipolar constraint extensively and

describes a variety of ways to solve for the fundamental matrix [33]. We utilize the

normalized 8 point algorithm [23] [15], as an implementation was readily available[18].

This method requires 8 or more corresponding xL and m for each camera.

Having calculated F, our end goal is: given image coordinates of the point we would

like to target the laser on, we would like to calculate the necessary coordinates to

send the laser. Each fundamental matrix provides one constraint on xL:

xL(f1mx + f2my + f3) + yL(f4mx + f5my + f6) + f7mx + f8my + f9 = 0

Which can be rewritten as:

xL(f1mx + f2my + f3) + yL(f4mx + f5my + f6) = −(f7mx + f8my + f9)
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Table 4.1: Comparison of requirements for laser calibration methods

Method Direct Epipolar
Number of correspondences required for calibration 6 8× 2
Requires 3D coordinates? Yes No
Correspondence required at run time? No Yes
Requires calibrated cameras? No Yes

However, each camera provides an additional constraint, and these can be stacked to

create a linear system.
f1mx + f2my + f3 f4mx + f5my + f6

f ′
1m

′
x + f ′

2m
′
y + f ′

3 f ′
4m

′
x + f ′

5m
′
y + f ′

6

...


 xL

yL

 =


−(f7mx + f8my + f9)

−(f ′
7m

′
x + f ′

8m
′
y + f ′

9)

...


With two or more cameras this system can be solved using linear least squares. The

main downside to this method is that the image coordinates of the targeted point

must be known in at least two cameras at every time step. In other words, in a two

camera system, the stereo correspondence between the left and right images must be

known for the point to be targeted by the laser.

Both the direct and epipolar calibration methods model the same geometry and

should be equally expressive. The main difference between them is in their input

requirements. An overview of the requirements for each method is given in Table 4.1.

The primary advantage of the direct approach is that 3D sensor data can be utilized

explicitly. The epipolar approach is advantageous in that a calibrated camera is not

required. Additionally, the greater foundation of previous work dedicated to solving

for the fundamental matrix likely makes this a reliable method. Experimental results

comparing these two methods are shown in Figure 6.4 and discussed in Chapter 6.
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Chapter 5

Implementation

This section describes details relevant to our implementation of the laser targeting

system.

5.1 Laser Unit

The laser unit used in our system is a modified Polytec OFV 056 Scanning Vibrom-

eter (Figure 5.1) [26]. The direction of the laser beam is determined by the angle of

2 sequential mirrors in the laser’s path. Each of these mirrors is mounted on a servo

motor [29] which is controlled by a PCI digital/analog conversion card (Figure 5.2).

Figure 5.1: Polytec Laser with Tyzx Stereo Camera
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d

 

y-mirror
x-mirror



laser

XL

x axis

y axis

z axis

dy

Figure 5.2: Diagram of laser mirror layout.

The exact relationship between laser units and control for this unit was unknown, so

we plot a regularly spaced grid of laser coordinates on the image plane. As can be

seen in Figure 5.3, there is significant distortion at the extremes of the image that

indicates our unit may break some of our assumptions. Examining the actual laser

unit, there are two probable causes: first, the mirrors are separated by some distance

d, such that the angle θ of the first mirror causes the laser beam to hit the second

mirror at a variable position dy along its axis (Figure 5.2). This violates our fixed

origin assumption. Second, it is probable that the (u, v) laser inputs map to mirror

angles, and consequently laser angles, thereby violating our linearity assumption.

In order to analyze the effect of these violations, some measurements were performed.

The maximum laser angles were measured as ±20o in the x and y directions, and the

distance d between mirror axes was measured as 40 mm. The distance between the

mirrors causes a translation in the origin of the laser beam as the angle varies. This

translation varies in the y-direction only by d · tan(θ). At the maximum angle of 20o,

the error is 40 · tan(20o) = 14.5 mm.

To determine the effect of our linear model versus an angular model, consider the

laser targeting a point X = [x, y, z]. To simplify, for the linear model, we assume the
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Figure 5.3: Distortion in laser control.

directional vector is [u, v, 1] and for the angular model, the laser inputs control laser

angles directly (θ = u, φ = v). Therefore, the targeted points are:

Xlinear =
[

zu zv z
]

Xangular =
[

ztan(u) ztan(v) z
]

The error between them is then:

√
(zu− ztan(u))2 + (zv − ztan(v))2

The maximum error occurs when both mirrors are at their 20o position, and is there-

fore z
√

2tan(20o). At 1 m, the error is 7 mm, but increases linearly with depth.

These are damaging discoveries, but to take them into account adds non-linearity

into our system, and therefore prevents us from attaining a solution directly. These

defects are only evident at extreme angles, so it is assumed that the object targeted

by the laser will be roughly centered in the image, thereby minimizing the effect of

these assumptions.
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5.2 Stereo Camera

We utilize a dedicated hardware stereo solution from Tyzx, Inc. as our sensor plat-

form [31],[32]. It provides a rigid housing for the pre-calibrated stereo cameras (Figure

5.4), which feed directly into a custom PCI card dedicated to computing stereo cor-

respondence. This PCI card is capable of computing up to 2.6 billion pixel-disparity

evaluations per second, and provides 512x480 images at 30 fps [31]. Taking advantage

of this solution allows us to bypass the hurdles inherent to stereo vision, and get 3D

information directly from the hardware driver API. One disadvantage to this solu-

tion is that the depth data is sparse: depth data can only be calculated in areas of

the image with sufficient texture. We addressed this problem by ignoring calibration

points without depth.

Figure 5.4: Tyzx stereo camera housing.

5.3 Calibration

Our calibration method requires corresponding points in image and laser coordinates.

We utilized two approaches for determining these correspondences: a forward method,

where a laser coordinate is given, and the red dot is found on the image, and an inverse

method, where an image coordinate is given, and the red dot is moved there through

iterative optimization routine.
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5.3.1 Forward Method

The forward method moves the laser in a grid and for each laser position (~xL), it

records the image coordinate (~x) where the laser dot is found. The position of the

laser dot is specified manually by the operator through a mouse click, or automatically

by a red dot detection algorithm described below.

5.3.2 Inverse Method

The inverse calibration method specifies an image coordinate, and attempts to move

the laser dot there using an iterative minimization algorithm. The minimization is

essentially a feedback loop between the laser and the red dot detection in the camera

image. It is given in Algorithm 1. As an implementation detail, let it be noted that

when the laser dot was on or near a chessboard corner, it would cause the corner

detection algorithm to mis-detect the corner. As a result, the iterative convergence

algorithm would never detect the red laser dot and the corner in the same position

and an infinite loop would result. To avoid this problem, the laser was moved off the

camera image when the corner detection image was captured.

Algorithm 1 Iterative Laser Targeting Algorithm

1: the target point is at image coordinate (a, b)
2: repeat
3: the laser position is (u, v)
4: the laser dot is detected in the image at (x, y).
5: the laser is moved by the amount:
6: (u, v) = [u + α(a− x), v + β(b− y)]
7: until a == x AND b == y

Where α, β are scale factors that are determined empirically to minimize (a−x, b−y).

5.3.3 Red Dot Detection

The red dot detection algorithm attempts to automate the finding of the laser dot

projected on the camera image. A number of issues had to be considered to make

this algorithm robust. The first is that the center of the laser tended to saturate all

the camera color channels. Thus, it was not actually red, but white. Secondly, the

projection of the laser in the camera image caused some undesirable artifacts (shown

in Figure 5.5) that may confuse a dot detection algorithm. With these considerations
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Figure 5.5: Laser artifacts (F) and true laser position (T) in camera image.

in mind we outline the algorithm in Algorithm 2. The basic idea of the algorithm is

to (1) determine which pixels in the image are attributable to the laser beam using

background subtraction (2) zero out pixels that are not (3) compute the weighted

center of mass of those pixels based on the brightness of the red color channel (4)

refine this position estimate over a smaller region.

In practice, the algorithm finds the red dot consistently in an office environment with

a moderate level of ambient lighting. If the overhead fluorescent lights are turned on,

the laser dot becomes virtually invisible in the camera image.

5.3.4 Point Selection

One major aspect of calibration quality is the set of calibration points. The Forward

Method allows control of which laser coordinates we wish to calibrate to, and in

section 6.2 we evaluate various ranges and densities to determine the optimal set.

The Inverse Method allows us to specify the image coordinate we wish to move the

laser to. This is much more advantageous because the calibration can be an interactive

procedure. The operator can tune the calibration to be accurate in a particular place

in the environment by adding calibration points at that point in the image.

Our strategy for point selection was to automate as much as possible. We used a

chessboard calibration pattern, which allows us to utilize a corner detection algorithm
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Algorithm 2 Detect Red Laser Dot in Image

1: Move laser out of image
2: Capture a background image of the scene, BG
3: BG = RedChannel(BG)
4: Move laser to desired location
5: Capture image I
6: I = RedChannel(I)
7: I′ = I−BG
8: I′ = dilate(I′)
9: for all (x, y) ∈ I | I(x, y) < threshold do

10: I(x, y) = 0
11: end for
12: (u, v) = CenterOfMass(I)
13: for all (x, y) ∈ I | (x, y) /∈ (u± width, v ± width) do
14: I(x, y) = 0
15: end for
16: (u, v) = CenterOfMass(I)
17: return (u, v)

to automatically specify the set of target points. We utilize Vezhnevets’ excellent

corner detection enhancement[30] to Bouguet’s Matlab Camera Calibration Toolbox

[5]. The result of corner detection is shown in figure 5.6. Let us emphasize that our

calibration method does not require a calibration pattern, it is simply a convenient

way of automatically, accurately, and consistently specifying a set of image points in

multiple camera images. Experimental results examining the effect of the point set

are given in Figure 6.3 and discussed in Section 6.3.3.

Figure 5.6: Corner detection result for stereo image pair.
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Chapter 6

Experimental Results

We perform a series of experiments to compare the two calibration methods and

determine how the the various parameters affect the quality of the calibration.

6.1 Calibration Procedure

Calibration was performed in an office environment using a textured planar surface

that could be easily positioned at different depths. The calibration procedure moves

the laser in a square grid of regular spacing, and for the manual calibration methods,

the user is asked to click the point on the camera image where the laser dot is

projected. This procedure is repeated with the textured plane at various distances in

front of the camera.

6.2 Measurement Procedure

For each calibration configuration, accuracy was measured by sampling 4 points in

3 positions: close (80cm), medium (120cm), and far (180cm). In addition, the far

position was offset to the left side of the camera. The target points were automatically

detected using a corner detection algorithm and a chessboard calibration pattern. In

each position, the four points were the extreme corners of the chessboard as detected

by the corner detection algorithm. The chessboard pattern was overlaid with a finer

grid of 5× 5 mm squares for hands-free measurement. We measured accuracy as the

signed (x, y) distance in mm on the chessboard plane from the target to the actual

position of the laser dot. We report the average euclidean distance for each point set
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individually, then the overall mean. The calibration algorithm is a minimization over

pixel differences, so points further from the camera will naturally have a higher error.

We report error as a function of depth to illustrate this relationship in Figure 6.6.

6.3 Results

This section describes the experiments performed and their results.

6.3.1 Error w.r.t the number of calibration planes.

In this experiment, we performed the calibration with 2, 3 and 4 depth planes and

report the accuracy of each. The depth planes were roughly fronto-parallel to the

camera and spaced uniformly between 700mm and 1800mm away. The size of the

calibration grid was .6 lu. The number of points per plane was varied to maintain

the same total number of points used in the calibration. Two planes were tested with

32 points total, three with 48, and four with 36. The average error for each number

of planes is reported in Figure 6.1. The secondary plots show the error broken down

by the depth of the points. The results show little effect as the number of planes
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Figure 6.1: Average error vs. the number of calibration planes.
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increases beyond two. The slight differences in the graph are within the margin of

error of the data. Calibration with only one depth plane is a degenerate configuration

[1], and leads to a rank 2 H matrix in the absence of noise. When used, it gives errors

in excess of a meter at depths other than the calibration depth.

From these results, we conclude that the extra labor for more depth planes is not

worthwhile, and perform all subsequent calibrations with 2 depth planes.

6.3.2 Error w.r.t. calibration grid size.

In this experiment, we varied the size of the calibration grid. The calibration was

performed with 2 depth planes and a 5×5 grid of laser points ranging from (−xL,−yL)

to (xL, yL), where (xL, yL) was varied from .2 lu to 1.0 lu by .2 lu increments. The

average error for each size is reported in Figure 6.2. Results over all tested points

show a slight downward trend as the size of the grid increases. This trend is well

within the error of the data. However, analyzing the error for the far point set, there

is a distinct improvement as the grid size increases. Also notable is that the error for

the close points is significantly lower for the smaller grid. One possible explanation is
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Figure 6.2: Average error vs. size of the calibration grid.
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that as the grid size increased, sometimes the laser dot did not show up in the camera

image, therefore leaving the larger sizes with fewer calibration points. Indeed, the

total number of calibration points for the data points are (50, 50, 50, 39, 24). Error for

close points is roughly constant up until .8 lu, when we see the total number of data

points drop to 39. Peeking ahead to Figure which plots error as a function of point

density, we are disappointed to see that overall error stay fairly constant beyond the

5 × 5 grid. We choose to minimize the error of the far point set at the expense of

close points, and use the 1.0 lu grid in subsequent calibrations.

6.3.3 Error w.r.t. calibration point density.

In this experiment, we varied the number of calibration points per plane. The calibra-

tion was performed with 2 depth planes, and a grid size of (1, 1) lu at point densities

of 16, 25, 36, 64, 100 and 144 points per plane. The average error for each density is

reported in Figure 6.3. The results show a decrease in error up to 25 points, then a

leveling off. Examining the different point sets, we see a continued decrease in error

16 25 36 64 100 144
0

1

2

3

4

5

6

7

8

9

Number of Points Per Calibration Planes

A
ve

ra
ge

 e
rr

or
, d

is
ta

nc
e 

in
 m

m

All Points
Points at 1909 mm
Points at 1400 mm
Points at 791 mm
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for far points, but an increase for close points. One possible explanation for this

behavior is that with a greater number of points comes greater overall distortion.

Since the worst distortion occurs at the far plane, this may cause the least squares

algorithm to compensate for these errors at the cost of the closer points. Also of note

is that the results for 49 points per plane were omitted because their error was dispro-

portionately high. Repeat tests confirmed this puzzling result. We can only conclude

that this was a strange degenerate configuration for our particular configuration.

6.3.4 Direct vs. Epipolar method.

In this experiment, we compare the direct and epipolar methods. For each method,

we perform the calibration with 2 depth planes, a grid size of (1, 1) lu with 100 points

per plane. We use the same set of clicked points as the data set for each calibration

method. The average error for each method is reported in Figure 6.4. The results

show that the epipolar method with around 1 mm less error than the direct method

overall, with the improvements evident in each point set. As mentioned previously,
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each method models the same underlying geometry, so we can only attribute this

improvement to the maturity of the fundamental matrix solution algorithm used.

Another possible explanation is that the epipolar method optimizes over the image

data directly, whereas there is an additional transformation to 3D coordinates using

the direct method, which may introduce additional error.

6.3.5 Manual vs. Automatic correspondence

In this experiment, we compare manual calibration with automatic calibration for

both forward and iterative inverse point selections. The forward and iterative methods

rely on very different point sets, so we perform each using automatic point detection

and manual point clicking. The forward calibration was performed with 2 depth

planes, a grid size of (1, 1) lu and 100 points per plane. The iterative method was

tested at 4 positions with 8 points at each position. The average error for each method

is reported in Figure 6.5. The results show that the manual iterative calibration

gives the best results seen thus far. However, it is also notable that for forward
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point selection, manual and automatic methods are roughly equivalent. Automatic

iterative is about the same overall as the two forward methods, although the error

profile is quit flat: the distance of the points seems to have little effect on error. The

main point to consider with these results is the quality of the selection of calibration

points. The forward point set has 200 total points compared to 32 for the inverse set.

The advantage here may have been the fine specification of target image coordinates

thanks to the sub-pixel accuracy of the corner detector.

6.3.6 Error wrt. to depth of targeted point

In this experiment, we examine the relationship of scene to targeting error. We use

the best known calibration from our previous tests, the Manual Iterative calibration

from Figure 6.5. We test 5 sets of 4 points, each at a different depth and horizontal

offset, then sort the points by z component and plot the error. The error relative

to depth is given in Figure 6.6. Results are very noisy, but as expected, do show a

general trend toward a higher error with greater depth.
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6.3.7 Error wrt. to horizontal offset of targeted point

This experiment examines the relationship between the horizontal offset of the target

point (in 3D camera coordinates) to the targeting error. We use the same data set

from Section 6.3.6, sort the data by the absolute value of the x component and plot

the error. The error relative to the horizontal offset is given in Figure 6.7. Results

are again very noisy, but as expected, there is a general trend that the greater the

x-component, the greater the error.
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Chapter 7

Conclusion

We presented two calibration methods to aim a laser pointer in the environment. The

direct method uses linear constraints to solve for the transformation between 3D cam-

era coordinates and laser units. It is suitable for use with integrated depth sensors

that provide 3d information out of the box. The epipolar method uses the epipo-

lar constraint to solve for the fundamental matrices that describe the relationship

between image coordinates and laser voltages. The epipolar method is best suited

to an uncalibrated stereo camera setup because only corresponding image points are

required. Experimental results verified the accuracy of both methods and determined

them equally accurate.

In future work, there are number of directions we would like to pursue. First, to

increase the accuracy of the system, we would like to better model our specific laser

unit. In order to do this, two nonlinearities will be introduced to the transformation.

Laser units dictate the angle of the mirrors, which affect the offset by the sine of the

angle. Furthermore, spacing between the mirrors will shift the y component by an

additional multiple of the sine of the angle. We believe that explicitly modelling these

factors will alleviate the distortion experienced at large angles.

Finally, we present this approach as an alternative to the visual servoing approach.

In future work we wish to apply this approach to our system and compare it with our

methodologies.
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